Properties

Label 5308416.oh
Order \( 2^{16} \cdot 3^{4} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $28$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27), (1,3,7,2,5,11)(4,9,17,21,18,24)(6,13,19,23,20,12)(8,15,10,14,22,16)(26,28) >;
 
Copy content gap:G := Group( (1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27), (1,3,7,2,5,11)(4,9,17,21,18,24)(6,13,19,23,20,12)(8,15,10,14,22,16)(26,28) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27)', '(1,3,7,2,5,11)(4,9,17,21,18,24)(6,13,19,23,20,12)(8,15,10,14,22,16)(26,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(24049891793165397689966651149935880763109720068895046337842053229321717787588143395819836775692623387832054093198756817868283225764666981256180020396752230743301241727080302409154853714088027718413198798777871315965493914201392302791467231109816066987021393053881433411718981411668088487581606419195877177200871274466269372476986762431817127936501305661686442048988719500020637996611677122142092073676144469123683793388663566504741352062122861439875948202718826922092368059080402893405436642103899821330777037239201563807198953548195470006611064458187963541319169615729936487955688652451553503102046809705037703493329155813996854356080734767005035712433605180166115315886008315120311976318658652689143550849375824854066455561364153397879845748452087555886608347908880384489009407702547907957519496498225152,5308416)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20;
 

Group information

Description:$C_2^{12}.C_6^2:S_3^2$
Order: \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^{12}.(C_3^2:D_6\times S_4)$, of order \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 16, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 22527 97280 632832 2036736 2519040 5308416
Conjugacy classes   1 85 13 55 64 34 252
Divisions 1 85 9 55 40 19 209
Autjugacy classes 1 75 9 52 40 19 196

Minimal presentations

Permutation degree:$28$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 27 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid b^{6}=d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 40, 38316261, 283484522, 119885602, 162, 217574403, 98600183, 529976404, 215787024, 47050844, 10236064, 10519284, 344733125, 202338745, 10820205, 34928345, 2884045, 345, 115570566, 60935306, 87133246, 27762906, 11041046, 173664007, 320319387, 45005807, 38655427, 18100887, 317867, 158527, 466568, 349948, 77808, 6588, 2288, 777609, 129629, 43249, 2509, 3729, 298805770, 185648790, 105494450, 1211830, 12921570, 2211110, 1100350, 955670411, 9214591, 65214771, 1328471, 14098411, 2423631, 1217651, 549160572, 204618992, 47595652, 33625872, 28768052, 3921952, 3467232, 561466093, 360339873, 237898133, 35607673, 23511693, 2175713, 6424453, 248734814, 696292234, 196457454, 68185874, 16696894, 14070714, 3388634, 139656975, 577031075, 79712695, 73267275, 34571615, 1726195, 6432135, 1044647296, 40043196, 292933856, 68115676, 28317336, 3351836, 5441836, 53654417, 128828917, 193914057, 18817997, 17113777, 14184837, 8198417, 1928059218, 264277118, 101389378, 8587698, 22103558, 9222718, 4603458, 1620388819, 36352839, 169495259, 8326879, 51613299, 4908119, 4696939]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.5, G.6, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(24049891793165397689966651149935880763109720068895046337842053229321717787588143395819836775692623387832054093198756817868283225764666981256180020396752230743301241727080302409154853714088027718413198798777871315965493914201392302791467231109816066987021393053881433411718981411668088487581606419195877177200871274466269372476986762431817127936501305661686442048988719500020637996611677122142092073676144469123683793388663566504741352062122861439875948202718826922092368059080402893405436642103899821330777037239201563807198953548195470006611064458187963541319169615729936487955688652451553503102046809705037703493329155813996854356080734767005035712433605180166115315886008315120311976318658652689143550849375824854066455561364153397879845748452087555886608347908880384489009407702547907957519496498225152,5308416); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17; o := G.18; p := G.19; q := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(24049891793165397689966651149935880763109720068895046337842053229321717787588143395819836775692623387832054093198756817868283225764666981256180020396752230743301241727080302409154853714088027718413198798777871315965493914201392302791467231109816066987021393053881433411718981411668088487581606419195877177200871274466269372476986762431817127936501305661686442048988719500020637996611677122142092073676144469123683793388663566504741352062122861439875948202718826922092368059080402893405436642103899821330777037239201563807198953548195470006611064458187963541319169615729936487955688652451553503102046809705037703493329155813996854356080734767005035712433605180166115315886008315120311976318658652689143550849375824854066455561364153397879845748452087555886608347908880384489009407702547907957519496498225152,5308416)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(24049891793165397689966651149935880763109720068895046337842053229321717787588143395819836775692623387832054093198756817868283225764666981256180020396752230743301241727080302409154853714088027718413198798777871315965493914201392302791467231109816066987021393053881433411718981411668088487581606419195877177200871274466269372476986762431817127936501305661686442048988719500020637996611677122142092073676144469123683793388663566504741352062122861439875948202718826922092368059080402893405436642103899821330777037239201563807198953548195470006611064458187963541319169615729936487955688652451553503102046809705037703493329155813996854356080734767005035712433605180166115315886008315120311976318658652689143550849375824854066455561364153397879845748452087555886608347908880384489009407702547907957519496498225152,5308416)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20;
 
Permutation group:Degree $28$ $\langle(1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27), (1,3,7,2,5,11)(4,9,17,21,18,24)(6,13,19,23,20,12)(8,15,10,14,22,16)(26,28) >;
 
Copy content gap:G := Group( (1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27), (1,3,7,2,5,11)(4,9,17,21,18,24)(6,13,19,23,20,12)(8,15,10,14,22,16)(26,28) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,8,14,21)(3,6,12,17)(5,10,18,11,19,24)(7,9,16,22)(13,20)(15,23)(25,26,27)', '(1,3,7,2,5,11)(4,9,17,21,18,24)(6,13,19,23,20,12)(8,15,10,14,22,16)(26,28)'])
 
Transitive group: 36T54627 36T54629 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^8.A_4^3)$ . $D_6$ $(C_2^{10}.A_4^2)$ . $S_3^2$ $C_2^{14}$ . $(C_3^2:S_3^2)$ $C_2^{12}$ . $(C_6^2:S_3^2)$ all 30

Elements of the group are displayed as permutations of degree 28.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 32 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_2^{12}.C_6^2:S_3^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.A_4^3$ $G/G' \simeq$ $C_2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^{12}.C_6^2:S_3^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{14}$ $G/\operatorname{Fit} \simeq$ $C_3^2:S_3^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^{12}.C_6^2:S_3^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{14}$ $G/\operatorname{soc} \simeq$ $C_3^2:S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{13}.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\times \He_3$

Subgroup diagram and profile

Series

Derived series $C_2^{12}.C_6^2:S_3^2$ $\rhd$ $C_2^8.A_4^3$ $\rhd$ $C_2^{14}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^{12}.C_6^2:S_3^2$ $\rhd$ $C_2^8.A_4^3.C_6$ $\rhd$ $C_2^{12}.(A_4\times \He_3)$ $\rhd$ $C_2^8.A_4^3$ $\rhd$ $C_2^{14}.C_3^2$ $\rhd$ $C_2^{14}.C_3$ $\rhd$ $C_2^{14}$ $\rhd$ $C_2^{12}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^{12}.C_6^2:S_3^2$ $\rhd$ $C_2^8.A_4^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $252 \times 252$ character table is not available for this group.

Rational character table

The $209 \times 209$ rational character table is not available for this group.