Properties

Label 5308416.bx.1327104.A
Order $ 2^{2} $
Index $ 2^{14} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24), (13,14)(15,16)(17,18)(19,20)(21,22)(23,24)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $A_4^2.S_4^2:C_2^3.D_4$
Order: \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $A_4^2\wr C_2.C_2^2.D_4$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism Group: $C_2^8.S_3\wr D_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^8.C_3^4.C_2^5.C_2^2$
Normalizer:$A_4^2.S_4^2:C_2^3.D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2\wr C_2.C_2^3.D_4$