Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \) |
Exponent: | \(2\) |
Generators: |
$\langle(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24), (13,14)(15,16)(17,18)(19,20)(21,22)(23,24)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $A_4^2.S_4^2:C_2^3.D_4$ |
Order: | \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $A_4^2\wr C_2.C_2^2.D_4$ |
Order: | \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Automorphism Group: | $C_2^8.S_3\wr D_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $4$ |
The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^8.C_3^4.C_2.C_2^6.C_2^5$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2^8.C_3^4.C_2^5.C_2^2$ |
Normalizer: | $A_4^2.S_4^2:C_2^3.D_4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $A_4^2\wr C_2.C_2^3.D_4$ |