Properties

Label 5280.z.88.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{30}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{15}, b^{20}d^{11}, b^{6}, d^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{30}$
Normalizer:$C_{10}\times D_6$
Normal closure:$F_{11}\times \SL(2,3)$
Core:$C_2$
Minimal over-subgroups:$C_6\times F_{11}$$C_{10}\times \SL(2,3)$$C_{10}\times D_6$
Maximal under-subgroups:$C_{30}$$C_{30}$$C_{30}$$C_2\times C_{10}$$C_2\times C_6$

Other information

Number of subgroups in this conjugacy class$44$
Möbius function$-1$
Projective image$S_4\times F_{11}$