Properties

Label 5280.z.2.a1.a1
Order $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(2\)
Exponent: not computed
Generators: $b^{15}, d^{4}, b^{6}, c, b^{20}d^{11}, d^{22}, d^{11}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$F_{11}\times \GL(2,3)$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$F_{11}\times \GL(2,3)$
Maximal under-subgroups:$C_{11}:C_5\times \SL(2,3)$$Q_8\times F_{11}$$C_6\times F_{11}$$D_{11}\times \SL(2,3)$$C_{10}\times \SL(2,3)$

Other information

Möbius function$-1$
Projective image$S_4\times F_{11}$