Properties

Label 5280.r.96.a1
Order $ 5 \cdot 11 $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_5$
Order: \(55\)\(\medspace = 5 \cdot 11 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 5 & 3 & 9 & 10 \\ 1 & 6 & 10 & 9 \\ 2 & 5 & 1 & 8 \\ 1 & 2 & 10 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 7 & 1 & 8 \\ 5 & 0 & 6 & 1 \\ 2 & 1 & 2 & 4 \\ 8 & 2 & 6 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Ambient group ($G$) information

Description: $\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,11).C_2\times S_4$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$C_{11}:C_5$, of order \(55\)\(\medspace = 5 \cdot 11 \)

Related subgroups

Centralizer:$Q_8$
Normalizer:$C_{44}.C_{10}$
Normal closure:$\SL(2,11)$
Core:$C_1$
Minimal over-subgroups:$C_{11}:C_{10}$
Maximal under-subgroups:$C_{11}$$C_5$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$\SL(2,11):C_2^2$