Properties

Label 5280.l.66.c1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{40}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a^{5}, a^{2}, c^{66}, c^{33}, c^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{120}$
Normalizer:$C_{40}:D_6$
Normal closure:$C_8\times F_{11}$
Core:$C_8$
Minimal over-subgroups:$C_8\times F_{11}$$C_2\times C_{120}$$C_{10}\times \SD_{16}$
Maximal under-subgroups:$C_2\times C_{20}$$C_{40}$$C_{40}$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-3$
Projective image$D_{12}\times F_{11}$