Properties

Label 5280.l.11.a1.a1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{40}:D_6$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(11\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a^{5}, c^{132}, c^{33}, a^{2}, bc^{144}, c^{176}, c^{66}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_3:(C_2^5.C_2^5)$
$W$$D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{40}:D_6$
Normal closure:$C_{24}:C_2\times F_{11}$
Core:$C_{24}:C_2$
Minimal over-subgroups:$C_{24}:C_2\times F_{11}$
Maximal under-subgroups:$C_{10}\times D_{12}$$C_{30}:Q_8$$C_2\times C_{120}$$C_{120}:C_2$$C_{120}:C_2$$C_{120}:C_2$$C_{120}:C_2$$C_{10}\times \SD_{16}$$C_8:D_6$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$D_{12}\times F_{11}$