Properties

Label 5280.l.660.a1.a1
Order $ 2^{3} $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $c^{33}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $S_3\times F_{11}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{24}\times F_{11}$
Normalizer:$C_{24}:C_2\times F_{11}$
Complements:$S_3\times F_{11}$ $S_3\times F_{11}$
Minimal over-subgroups:$C_{88}$$C_{40}$$C_{24}$$C_2\times C_8$$\SD_{16}$$\SD_{16}$
Maximal under-subgroups:$C_4$

Other information

Möbius function$-66$
Projective image$D_{12}\times F_{11}$