Properties

Label 5280.l.60.g1.a1
Order $ 2^{3} \cdot 11 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{11}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a^{5}bc^{144}, c^{24}, c^{132}, c^{66}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$D_4\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$\SD_{16}\times F_{11}$
Normal closure:$C_{11}\times D_{12}$
Core:$C_{44}$
Minimal over-subgroups:$C_{44}:C_{10}$$C_{11}\times D_{12}$$D_4\times D_{11}$$C_{11}\times \SD_{16}$$C_{11}:\SD_{16}$
Maximal under-subgroups:$C_{44}$$C_2\times C_{22}$$D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$2$
Projective image$D_{12}\times F_{11}$