Properties

Label 5280.l.120.b1.a1
Order $ 2^{2} \cdot 11 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $c^{66}, c^{132}, c^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}\times D_6$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times S_3\times S_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{264}$
Normalizer:$C_{24}:C_2\times F_{11}$
Minimal over-subgroups:$C_{11}:C_{20}$$C_{132}$$C_4\times D_{11}$$C_{88}$$C_{11}:C_8$$D_4\times C_{11}$$D_{44}$$Q_8\times C_{11}$$C_{11}:Q_8$
Maximal under-subgroups:$C_{22}$$C_4$

Other information

Möbius function$-24$
Projective image$D_{12}\times F_{11}$