Properties

Label 5280.l.3.a1.a1
Order $ 2^{5} \cdot 5 \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SD_{16}\times F_{11}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Index: \(3\)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Generators: $a^{5}, c^{132}, c^{33}, a^{2}, b, c^{24}, c^{66}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{22}.(C_2^4\times C_{10})$
$W$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SD_{16}\times F_{11}$
Normal closure:$C_{24}:C_2\times F_{11}$
Core:$C_8\times F_{11}$
Minimal over-subgroups:$C_{24}:C_2\times F_{11}$
Maximal under-subgroups:$C_8\times F_{11}$$D_4\times F_{11}$$Q_8\times F_{11}$$C_{88}:C_{10}$$D_4.F_{11}$$Q_8:F_{11}$$C_{88}:C_{10}$$\SD_{16}\times D_{11}$$C_{10}\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_{12}\times F_{11}$