Properties

Label 5280.l.6.d1.a1
Order $ 2^{4} \cdot 5 \cdot 11 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{88}:C_{10}$
Order: \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Generators: $a^{5}bc^{144}, c^{24}, a^{2}, c^{66}, c^{33}, c^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$W$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\SD_{16}\times F_{11}$
Normal closure:$C_{264}:C_{10}$
Core:$C_{11}:C_{40}$
Minimal over-subgroups:$C_{264}:C_{10}$$\SD_{16}\times F_{11}$
Maximal under-subgroups:$C_{11}:C_{40}$$C_{44}:C_{10}$$C_{44}.C_{10}$$C_{11}\times \SD_{16}$$C_5\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$D_{12}\times F_{11}$