Properties

Label 52728.b.4056.a1
Order $ 13 $
Index $ 2^{3} \cdot 3 \cdot 13^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}$
Order: \(13\)
Index: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(13\)
Generators: $b^{2}d^{3}e^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{13}^3:(C_4\times S_3)$
Order: \(52728\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{3} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Automorphism Group: $D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{13}^3.C_3.C_6^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{13}\wr S_3$
Normalizer:$C_{13}^3:(C_4\times S_3)$
Complements:$C_{13}^2:(C_4\times S_3)$
Minimal over-subgroups:$C_{13}^2$$C_{13}^2$$C_{13}^2$$C_{13}^2$$C_{39}$$C_{26}$$D_{13}$$D_{13}$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{13}^3:(C_4\times S_3)$