Properties

Label 4056.bb
Order \( 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 13 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3 \)
Perm deg. $26$
Trans deg. $26$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23), (1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23) >;
 
Copy content gap:G := Group( (1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23), (1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23) );
 
Copy content sage:G = PermutationGroup(['(1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23)', '(1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(510441394630661718194494619427342127350372583007196380197151,4056)'); a = G.1; b = G.2; c = G.5; d = G.6;
 

Group information

Description:$C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$, $C_{13}$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, monomial (hence solvable), and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12 13 26
Elements 1 247 338 1352 338 676 168 936 4056
Conjugacy classes   1 3 1 4 1 2 10 6 28
Divisions 1 3 1 2 1 1 4 2 15
Autjugacy classes 1 2 1 3 1 2 3 1 14

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 12 24 36 72
Irr. complex chars.   8 4 0 12 4 0 0 28
Irr. rational chars. 4 4 1 0 1 4 1 15

Minimal presentations

Permutation degree:$26$
Transitive degree:$26$
Rank: $2$
Inequivalent generating pairs: $168$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 12 24
Arbitrary 12 12 24

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d \mid b^{12}=c^{13}=d^{13}=[c,d]=1, a^{2}=b^{6}c^{4}d^{11}, b^{a}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([6, -2, -2, -2, -3, -13, 13, 21240, 32953, 31, 41402, 50, 49347, 113764, 6850, 20536, 10192, 127877, 11243, 11249, 4235]); a,b,c,d := Explode([G.1, G.2, G.5, G.6]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d"]);
 
Copy content gap:G := PcGroupCode(510441394630661718194494619427342127350372583007196380197151,4056); a := G.1; b := G.2; c := G.5; d := G.6;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(510441394630661718194494619427342127350372583007196380197151,4056)'); a = G.1; b = G.2; c = G.5; d = G.6;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(510441394630661718194494619427342127350372583007196380197151,4056)'); a = G.1; b = G.2; c = G.5; d = G.6;
 
Permutation group:Degree $26$ $\langle(1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23), (1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23), (1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23) >;
 
Copy content gap:G := Group( (1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23), (1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23) );
 
Copy content sage:G = PermutationGroup(['(1,17,5,24)(2,22,4,19)(3,14)(6,16,13,25)(7,21,12,20)(8,26,11,15)(9,18,10,23)', '(1,17,6,24,11,18,3,25,8,19,13,26,5,20,10,14,2,21,7,15,12,22,4,16,9,23)'])
 
Transitive group: 26T30 39T42 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_{13}^2:S_3)$ $\,\rtimes\,$ $C_4$ (2) $(C_{13}^2:C_4)$ $\,\rtimes\,$ $S_3$ $C_{13}^2$ $\,\rtimes\,$ $(C_4\times S_3)$ $(C_{13}^2:C_3)$ $\,\rtimes\,$ $(C_2\times C_4)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_{13}:D_{13})$ . $D_6$ $(C_{13}^2:D_6)$ . $C_2$ $(C_{13}^2:C_6)$ . $C_2^2$ more information

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 4090 subgroups in 57 conjugacy classes, 12 normal (10 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_{13}^2:(C_4\times S_3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{13}^2:C_3$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{13}^2:(C_4\times S_3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{13}^2$ $G/\operatorname{Fit} \simeq$ $C_4\times S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{13}^2:(C_4\times S_3)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{13}^2$ $G/\operatorname{soc} \simeq$ $C_4\times S_3$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times C_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}^2$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{13}^2:(C_4\times S_3)$ $\rhd$ $C_{13}^2:C_3$ $\rhd$ $C_{13}^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{13}^2:(C_4\times S_3)$ $\rhd$ $C_{13}^2:(C_3:C_4)$ $\rhd$ $C_{13}^2:C_6$ $\rhd$ $C_{13}^2:C_3$ $\rhd$ $C_{13}^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{13}^2:(C_4\times S_3)$ $\rhd$ $C_{13}^2:C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $28 \times 28$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 2A 2B 2C 3A 4A 4B 6A 12A 13A 13B 13C 13D 26A 26B
Size 1 39 39 169 338 338 1014 338 676 36 36 24 72 468 468
2 P 1A 1A 1A 1A 3A 2C 2C 3A 6A 13A 13B 13C 13D 13A 13B
3 P 1A 2A 2B 2C 1A 4A 4B 2C 4A 13A 13B 13C 13D 26A 26B
13 P 1A 2A 2B 2C 3A 4A 4B 6A 12A 1A 1A 1A 1A 2A 2B
4056.bb.1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4056.bb.1b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4056.bb.1c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4056.bb.1d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4056.bb.1e 2 2 2 2 2 0 0 2 0 2 2 2 2 2 2
4056.bb.1f 2 2 2 2 2 0 0 2 0 2 2 2 2 2 2
4056.bb.2a 2 0 0 2 1 2 0 1 1 2 2 2 2 0 0
4056.bb.2b 2 0 0 2 1 2 0 1 1 2 2 2 2 0 0
4056.bb.2c 4 0 0 4 2 0 0 2 0 4 4 4 4 0 0
4056.bb.12a 36 0 12 0 0 0 0 0 0 10 10 3 3 0 1
4056.bb.12b 36 12 0 0 0 0 0 0 0 3 3 3 3 1 0
4056.bb.12c 36 12 0 0 0 0 0 0 0 3 3 3 3 1 0
4056.bb.12d 36 0 12 0 0 0 0 0 0 10 10 3 3 0 1
4056.bb.24a 24 0 0 0 0 0 0 0 0 2 2 11 2 0 0
4056.bb.24b 72 0 0 0 0 0 0 0 0 6 6 6 7 0 0