Show commands: Magma
Group invariants
Abstract group: | $C_{13}^2:(C_4\times S_3)$ |
| |
Order: | $4056=2^{3} \cdot 3 \cdot 13^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $39$ |
| |
Transitive number $t$: | $42$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,31,21,4,29,22,2,39,17,12,28,16)(3,34,26,7,27,23,13,36,25,9,30,15)(5,37,18,10,38,24,11,33,20,6,32,14)(8,35,19)$, $(1,5,9,13,4,8,12,3,7,11,2,6,10)(14,35,24,39,21,30,18,34,15,38,25,29,22,33,19,37,16,28,26,32,23,36,20,27,17,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$ $24$: $S_3 \times C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 13: None
Low degree siblings
26T30, 39T42Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{39}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{19},1$ | $39$ | $2$ | $19$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)(14,35)(15,32)(16,29)(17,39)(18,36)(19,33)(20,30)(21,27)(22,37)(23,34)(24,31)(25,28)(26,38)$ |
2B | $2^{13},1^{13}$ | $39$ | $2$ | $13$ | $(14,33)(15,36)(16,39)(17,29)(18,32)(19,35)(20,38)(21,28)(22,31)(23,34)(24,37)(25,27)(26,30)$ |
2C | $2^{18},1^{3}$ | $169$ | $2$ | $18$ | $( 1, 3)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)(14,16)(17,26)(18,25)(19,24)(20,23)(21,22)(27,29)(30,39)(31,38)(32,37)(33,36)(34,35)$ |
3A | $3^{13}$ | $338$ | $3$ | $26$ | $( 1,24,29)( 2,15,28)( 3,19,27)( 4,23,39)( 5,14,38)( 6,18,37)( 7,22,36)( 8,26,35)( 9,17,34)(10,21,33)(11,25,32)(12,16,31)(13,20,30)$ |
4A1 | $4^{9},1^{3}$ | $169$ | $4$ | $27$ | $( 1,10, 3, 7)( 4,12,13, 5)( 6, 9,11, 8)(14,23,16,20)(17,25,26,18)(19,22,24,21)(27,36,29,33)(30,38,39,31)(32,35,37,34)$ |
4A-1 | $4^{9},1^{3}$ | $169$ | $4$ | $27$ | $( 1, 7, 3,10)( 4, 5,13,12)( 6, 8,11, 9)(14,20,16,23)(17,18,26,25)(19,21,24,22)(27,33,29,36)(30,31,39,38)(32,34,37,35)$ |
4B1 | $4^{9},2,1$ | $507$ | $4$ | $28$ | $( 1,23, 9,19)( 2,16, 8,26)( 3,22, 7,20)( 4,15, 6,14)( 5,21)(10,25,13,17)(11,18,12,24)(27,34,38,31)(28,29,37,36)(30,32,35,33)$ |
4B-1 | $4^{9},2,1$ | $507$ | $4$ | $28$ | $( 1,19, 9,23)( 2,26, 8,16)( 3,20, 7,22)( 4,14, 6,15)( 5,21)(10,17,13,25)(11,24,12,18)(27,31,38,34)(28,36,37,29)(30,33,35,32)$ |
6A | $6^{6},3$ | $338$ | $6$ | $32$ | $( 1,27,24, 3,29,19)( 2,28,15)( 4,30,23,13,39,20)( 5,31,14,12,38,16)( 6,32,18,11,37,25)( 7,33,22,10,36,21)( 8,34,26, 9,35,17)$ |
12A1 | $12^{3},3$ | $338$ | $12$ | $35$ | $( 1,22,27,10,24,36, 3,21,29, 7,19,33)( 2,15,28)( 4,14,30,12,23,38,13,16,39, 5,20,31)( 6,26,32, 9,18,35,11,17,37, 8,25,34)$ |
12A-1 | $12^{3},3$ | $338$ | $12$ | $35$ | $( 1,33,19, 7,29,21, 3,36,24,10,27,22)( 2,28,15)( 4,31,20, 5,39,16,13,38,23,12,30,14)( 6,34,25, 8,37,17,11,35,18, 9,32,26)$ |
13A1 | $13^{2},1^{13}$ | $12$ | $13$ | $24$ | $(14,20,26,19,25,18,24,17,23,16,22,15,21)(27,35,30,38,33,28,36,31,39,34,29,37,32)$ |
13A2 | $13^{2},1^{13}$ | $12$ | $13$ | $24$ | $(14,26,25,24,23,22,21,20,19,18,17,16,15)(27,30,33,36,39,29,32,35,38,28,31,34,37)$ |
13A4 | $13^{2},1^{13}$ | $12$ | $13$ | $24$ | $(14,25,23,21,19,17,15,26,24,22,20,18,16)(27,33,39,32,38,31,37,30,36,29,35,28,34)$ |
13B1 | $13^{3}$ | $12$ | $13$ | $36$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,21,15,22,16,23,17,24,18,25,19,26,20)(27,35,30,38,33,28,36,31,39,34,29,37,32)$ |
13B2 | $13^{3}$ | $12$ | $13$ | $36$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,30,33,36,39,29,32,35,38,28,31,34,37)$ |
13B4 | $13^{3}$ | $12$ | $13$ | $36$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,16,18,20,22,24,26,15,17,19,21,23,25)(27,33,39,32,38,31,37,30,36,29,35,28,34)$ |
13C | $13^{3}$ | $24$ | $13$ | $36$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,26,25,24,23,22,21,20,19,18,17,16,15)(27,31,35,39,30,34,38,29,33,37,28,32,36)$ |
13D1 | $13^{3}$ | $24$ | $13$ | $36$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,19,24,16,21,26,18,23,15,20,25,17,22)(27,31,35,39,30,34,38,29,33,37,28,32,36)$ |
13D2 | $13^{3}$ | $24$ | $13$ | $36$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,18,22,26,17,21,25,16,20,24,15,19,23)(27,35,30,38,33,28,36,31,39,34,29,37,32)$ |
13D4 | $13^{3}$ | $24$ | $13$ | $36$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,22,17,25,20,15,23,18,26,21,16,24,19)(27,37,34,31,28,38,35,32,29,39,36,33,30)$ |
26A1 | $26,2^{6},1$ | $156$ | $26$ | $31$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)(14,39,20,34,26,29,19,37,25,32,18,27,24,35,17,30,23,38,16,33,22,28,15,36,21,31)$ |
26A3 | $26,2^{6},1$ | $156$ | $26$ | $31$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)(14,34,19,32,24,30,16,28,21,39,26,37,18,35,23,33,15,31,20,29,25,27,17,38,22,36)$ |
26A7 | $26,2^{6},1$ | $156$ | $26$ | $31$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)(14,37,17,28,20,32,23,36,26,27,16,31,19,35,22,39,25,30,15,34,18,38,21,29,24,33)$ |
26B1 | $26,13$ | $156$ | $26$ | $37$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,37,21,32,15,27,22,35,16,30,23,38,17,33,24,28,18,36,25,31,19,39,26,34,20,29)$ |
26B3 | $26,13$ | $156$ | $26$ | $37$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,32,22,30,17,28,25,39,20,37,15,35,23,33,18,31,26,29,21,27,16,38,24,36,19,34)$ |
26B7 | $26,13$ | $156$ | $26$ | $37$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,35,24,39,21,30,18,34,15,38,25,29,22,33,19,37,16,28,26,32,23,36,20,27,17,31)$ |
Malle's constant $a(G)$: $1/13$
Character table
1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 12A1 | 12A-1 | 13A1 | 13A2 | 13A4 | 13B1 | 13B2 | 13B4 | 13C | 13D1 | 13D2 | 13D4 | 26A1 | 26A3 | 26A7 | 26B1 | 26B3 | 26B7 | ||
Size | 1 | 39 | 39 | 169 | 338 | 169 | 169 | 507 | 507 | 338 | 338 | 338 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 | 156 | 156 | 156 | 156 | 156 | 156 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 2C | 2C | 3A | 6A | 6A | 13A2 | 13A4 | 13A1 | 13B2 | 13B4 | 13B1 | 13C | 13D2 | 13D4 | 13D1 | 13A1 | 13A2 | 13A4 | 13B1 | 13B2 | 13B4 | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2C | 4A1 | 4A-1 | 13A2 | 13A4 | 13A1 | 13B2 | 13B4 | 13B1 | 13C | 13D2 | 13D4 | 13D1 | 26A3 | 26A7 | 26A1 | 26B3 | 26B7 | 26B1 | |
13 P | 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 12A1 | 12A-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2B | 2B | |
Type | |||||||||||||||||||||||||||||
4056.bb.1a | R | ||||||||||||||||||||||||||||
4056.bb.1b | R | ||||||||||||||||||||||||||||
4056.bb.1c | R | ||||||||||||||||||||||||||||
4056.bb.1d | R | ||||||||||||||||||||||||||||
4056.bb.1e1 | C | ||||||||||||||||||||||||||||
4056.bb.1e2 | C | ||||||||||||||||||||||||||||
4056.bb.1f1 | C | ||||||||||||||||||||||||||||
4056.bb.1f2 | C | ||||||||||||||||||||||||||||
4056.bb.2a | R | ||||||||||||||||||||||||||||
4056.bb.2b | R | ||||||||||||||||||||||||||||
4056.bb.2c1 | C | ||||||||||||||||||||||||||||
4056.bb.2c2 | C | ||||||||||||||||||||||||||||
4056.bb.12a1 | R | ||||||||||||||||||||||||||||
4056.bb.12a2 | R | ||||||||||||||||||||||||||||
4056.bb.12a3 | R | ||||||||||||||||||||||||||||
4056.bb.12b1 | R | ||||||||||||||||||||||||||||
4056.bb.12b2 | R | ||||||||||||||||||||||||||||
4056.bb.12b3 | R | ||||||||||||||||||||||||||||
4056.bb.12c1 | R | ||||||||||||||||||||||||||||
4056.bb.12c2 | R | ||||||||||||||||||||||||||||
4056.bb.12c3 | R | ||||||||||||||||||||||||||||
4056.bb.12d1 | R | ||||||||||||||||||||||||||||
4056.bb.12d2 | R | ||||||||||||||||||||||||||||
4056.bb.12d3 | R | ||||||||||||||||||||||||||||
4056.bb.24a | R | ||||||||||||||||||||||||||||
4056.bb.24b1 | R | ||||||||||||||||||||||||||||
4056.bb.24b2 | R | ||||||||||||||||||||||||||||
4056.bb.24b3 | R |
Regular extensions
Data not computed