Properties

Label 5184.og.324.c1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(1,7), (10,13)(11,12), (2,9)(4,5), (2,4)(3,6)(5,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_4\times S_3\wr S_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_4^2:C_2^2$
Normal closure:$S_3^3:D_6$
Core:$C_2$
Minimal over-subgroups:$C_2^2\times D_6$$C_2^2\times D_6$$C_2^3\times C_4$$C_2^3:C_4$$C_2^2\times D_4$
Maximal under-subgroups:$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$

Other information

Number of subgroups in this conjugacy class$81$
Möbius function$0$
Projective image$S_3^3:D_6$