Properties

Label 5184.og.2.a1.a1
Order $ 2^{5} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^3:D_6$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(2,3,9)(4,6,5), (10,13)(11,12), (1,4,2)(3,7,6)(5,9,8), (2,5,9,6,3,4), (2,9), (1,8,7)(2,9,3)(4,6,5), (2,9)(4,6), (2,3)(4,6,5)(7,8), (4,5,6)\rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_4\times S_3\wr S_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times S_3\wr S_3$
Minimal over-subgroups:$C_4\times S_3\wr S_3$
Maximal under-subgroups:$S_3^3:C_6$$C_2\times C_3^3:S_4$$C_2\times C_3^3:S_4$$S_3\wr S_3$$S_3\wr S_3$$S_3\wr S_3$$S_3\wr S_3$$S_3^3:C_2^2$$C_2\times C_3^3:D_6$$C_2^2\times S_4$

Other information

Möbius function$-1$
Projective image$S_3^3:D_6$