Properties

Label 5184.og.2592.a1.a1
Order $ 2 $
Index $ 2^{5} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(10,13)(11,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_4\times S_3\wr S_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3^3:D_6$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_2^2\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4\times S_3\wr S_3$
Normalizer:$C_4\times S_3\wr S_3$
Minimal over-subgroups:$C_6$$C_6$$C_6$$C_6$$C_4$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_4$$C_4$$C_4$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$2592$
Projective image$S_3^3:D_6$