Properties

Label 512.7530050.16.cw1
Order $ 2^{5} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Generators: $\langle(1,3)(2,6)(4,8)(5,7)(9,10)(11,12), (1,3)(5,7), (1,7)(2,4)(3,5)(6,8)(9,10)(11,12), (1,3)(2,6)(4,8)(5,7), (1,3)(2,6)(4,8)(5,7)(9,11)(10,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.(D_4\times S_4)$, of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $\GL(5,2)$, of order \(9999360\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^5:D_4$
Normal closure:$D_4:C_2^4$
Core:$C_2^3$
Minimal over-subgroups:$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$
Maximal under-subgroups:$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image not computed