Properties

Label 512.7530050.4.h1
Order $ 2^{7} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,4)(2,7)(3,8)(5,6), (1,3)(5,7), (1,3)(2,6)(4,8)(5,7)(9,10)(11,12), (4,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.(D_4\times S_4)$, of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^{12}.D_6^2:D_6$, of order \(7077888\)\(\medspace = 2^{18} \cdot 3^{3} \)
$\card{W}$\(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_4^2:C_2^3$
Complements:$C_2^2$
Minimal over-subgroups:$C_2^5:D_4$$C_4^2:C_2^4$
Maximal under-subgroups:$D_4:C_2^3$$D_4\times C_2^3$$D_4:C_2^3$$D_4:C_2^3$$D_4:C_2^3$$D_4\times C_2^3$$D_4:C_2^3$$D_4:C_2^3$$D_4\times C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image not computed