Properties

Label 508032.a.8064.a1.a1
Order $ 3^{2} \cdot 7 $
Index $ 2^{7} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{63}$
Order: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Index: \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
Exponent: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Generators: $\langle(1,8,3,7,6,4,5)(10,17,11)(12,14,13)(15,18,16), (1,8,3,7,6,4,5), (1,3,6,5,8,7,4)(10,13,18,17,12,16,11,14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SOPlus(4,8)$
Order: \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_6^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{63}$
Normalizer:$D_7\times D_9$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$C_9\times F_8$$C_9\times D_7$$C_7\times D_9$$D_{63}$
Maximal under-subgroups:$C_{21}$$C_9$

Other information

Number of subgroups in this conjugacy class$2016$
Möbius function$0$
Projective image$\SOPlus(4,8)$