Subgroup ($H$) information
Description: | $D_{63}$ |
Order: | \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \) |
Index: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \) |
Generators: |
$\langle(10,14,13,16,15,11,18,17,12), (1,7)(2,8)(3,6)(4,5)(10,13)(11,18)(12,16) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $\SOPlus(4,8)$ |
Order: | \(508032\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 7^{2} \) |
Exponent: | \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\SL(2,8)^2:C_6$, of order \(1524096\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 7^{2} \) |
$\operatorname{Aut}(H)$ | $C_{63}:C_6^2$, of order \(2268\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 7 \) |
$W$ | $D_7\times D_9$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) |
Related subgroups
Centralizer: | $C_1$ | ||
Normalizer: | $D_7\times D_9$ | ||
Normal closure: | $\SL(2,8)^2$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $D_7\times D_9$ | ||
Maximal under-subgroups: | $C_{63}$ | $D_{21}$ | $D_9$ |
Other information
Number of subgroups in this conjugacy class | $2016$ |
Möbius function | $0$ |
Projective image | $\SOPlus(4,8)$ |