Subgroup ($H$) information
Description: | $D_{35}$ |
Order: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Index: | \(7\) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Generators: |
$a, bc^{15}, c^{21}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_7:D_{35}$ |
Order: | \(490\)\(\medspace = 2 \cdot 5 \cdot 7^{2} \) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_5\times C_7^2:C_3.\SL(2,7).C_2$ |
$\operatorname{Aut}(H)$ | $F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
$\operatorname{res}(S)$ | $F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
$W$ | $D_{35}$, of order \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $-1$ |
Projective image | $C_7:D_{35}$ |