Properties

Label 490.9.7.a1.b1
Order $ 2 \cdot 5 \cdot 7 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{35}$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Index: \(7\)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $a, bc^{15}, c^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_7:D_{35}$
Order: \(490\)\(\medspace = 2 \cdot 5 \cdot 7^{2} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times C_7^2:C_3.\SL(2,7).C_2$
$\operatorname{Aut}(H)$ $F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$D_{35}$, of order \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{35}$
Normal closure:$C_7:D_{35}$
Core:$C_{35}$
Minimal over-subgroups:$C_7:D_{35}$
Maximal under-subgroups:$C_{35}$$D_7$$D_5$
Autjugate subgroups:490.9.7.a1.a1490.9.7.a1.c1490.9.7.a1.d1490.9.7.a1.e1490.9.7.a1.f1490.9.7.a1.g1490.9.7.a1.h1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$C_7:D_{35}$