Properties

Label 490.9.14.a1.b1
Order $ 5 \cdot 7 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{35}$
Order: \(35\)\(\medspace = 5 \cdot 7 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(35\)\(\medspace = 5 \cdot 7 \)
Generators: $c^{21}, bc^{15}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_7:D_{35}$
Order: \(490\)\(\medspace = 2 \cdot 5 \cdot 7^{2} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times C_7^2:C_3.\SL(2,7).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10290\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\times C_{35}$
Normalizer:$C_7:D_{35}$
Complements:$D_7$ $D_7$ $D_7$ $D_7$ $D_7$ $D_7$ $D_7$
Minimal over-subgroups:$C_7\times C_{35}$$D_{35}$
Maximal under-subgroups:$C_7$$C_5$
Autjugate subgroups:490.9.14.a1.a1490.9.14.a1.c1490.9.14.a1.d1490.9.14.a1.e1490.9.14.a1.f1490.9.14.a1.g1490.9.14.a1.h1

Other information

Möbius function$7$
Projective image$C_7:D_{35}$