Subgroup ($H$) information
Description: | $C_3^3:C_3^2$ |
Order: | \(243\)\(\medspace = 3^{5} \) |
Index: | \(2\) |
Exponent: | \(3\) |
Generators: |
$\left(\begin{array}{rrrr}
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 2 \\
1 & 0 & 0 & 2
\end{array}\right), \left(\begin{array}{rrrr}
2 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 2 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 2 & 2 & 1 \\
0 & 1 & 2 & 0
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 2 & 1 & 2
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right)$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_6.C_3^4$ |
Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_3^4$, of order \(81\)\(\medspace = 3^{4} \) |
Related subgroups
Centralizer: | $C_6$ |
Normalizer: | $C_6.C_3^4$ |
Complements: | $C_2$ |
Minimal over-subgroups: | $C_6.C_3^4$ |
Maximal under-subgroups: | $C_3\times \He_3$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_3^3\times C_6$ |