Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(81\)\(\medspace = 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rrrr}
1 & 2 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 2 & 2 & 1 \\
0 & 1 & 2 & 0
\end{array}\right), \left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the socle, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).
Ambient group ($G$) information
Description: | $C_6.C_3^4$ |
Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3^4$ |
Order: | \(81\)\(\medspace = 3^{4} \) |
Exponent: | \(3\) |
Automorphism Group: | $C_2.\PSL(4,3).C_2$ |
Outer Automorphisms: | $C_2.\PSL(4,3).C_2$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_6.C_3^4$ | |
Normalizer: | $C_6.C_3^4$ | |
Minimal over-subgroups: | $C_3\times C_6$ | |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $729$ |
Projective image | $C_3^4$ |