Properties

Label 486.254.81.a1
Order $ 2 \cdot 3 $
Index $ 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 2 & 1 \\ 0 & 1 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the socle, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_6.C_3^4$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^4$
Order: \(81\)\(\medspace = 3^{4} \)
Exponent: \(3\)
Automorphism Group: $C_2.\PSL(4,3).C_2$
Outer Automorphisms: $C_2.\PSL(4,3).C_2$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(4199040\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6.C_3^4$
Normalizer:$C_6.C_3^4$
Minimal over-subgroups:$C_3\times C_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$729$
Projective image$C_3^4$