Subgroup ($H$) information
| Description: | $C_{11}:Q_8$ |
| Order: | \(88\)\(\medspace = 2^{3} \cdot 11 \) |
| Index: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Generators: |
$a^{5}, c^{22}, b, c^{11}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{44}.F_{11}$ |
| Order: | \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{11}:C_5$ |
| Order: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Exponent: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Automorphism Group: | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_{10}^2.C_2^3$ |
| $\operatorname{Aut}(H)$ | $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| $W$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
Related subgroups
Other information
| Möbius function | $11$ |
| Projective image | $C_{22}:F_{11}$ |