Properties

Label 4840.bd.55.a1.a1
Order $ 2^{3} \cdot 11 $
Index $ 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:Q_8$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a^{5}, c^{22}, b, c^{11}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{44}.F_{11}$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{11}:C_5$
Order: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{44}.F_{11}$
Complements:$C_{11}:C_5$ $C_{11}:C_5$ $C_{11}:C_5$ $C_{11}:C_5$ $C_{11}:C_5$ $C_{11}:C_5$
Minimal over-subgroups:$C_{11}^2:Q_8$$C_{44}.C_{10}$
Maximal under-subgroups:$C_{44}$$C_{11}:C_4$$C_{11}:C_4$$Q_8$

Other information

Möbius function$11$
Projective image$C_{22}:F_{11}$