Properties

Label 4840.bd.5.a1.a1
Order $ 2^{3} \cdot 11^{2} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:Q_8$
Order: \(968\)\(\medspace = 2^{3} \cdot 11^{2} \)
Index: \(5\)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a^{5}, c^{4}, c^{22}, c^{11}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{44}.F_{11}$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{110}.C_5.C_2^4$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(8800\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(11\)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{44}.F_{11}$
Complements:$C_5$
Minimal over-subgroups:$C_{44}.F_{11}$
Maximal under-subgroups:$C_{11}\times C_{44}$$C_{11}:C_{44}$$C_{11}:C_{44}$$C_{11}:Q_8$$Q_8\times C_{11}$

Other information

Möbius function$-1$
Projective image$C_{22}:F_{11}$