Properties

Label 4840.bd.11.b1.a1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(11\)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}c^{22}, c^{22}, c^{11}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{44}.F_{11}$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{44}.C_{10}$
Normal closure:$C_{44}.F_{11}$
Core:$C_{11}:Q_8$
Minimal over-subgroups:$C_{44}.F_{11}$
Maximal under-subgroups:$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:Q_8$$C_5\times Q_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$C_{22}:F_{11}$