Properties

Label 4826640.c.28392.c1.a1
Order $ 2 \cdot 5 \cdot 17 $
Index $ 2^{3} \cdot 3 \cdot 7 \cdot 13^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{85}$
Order: \(170\)\(\medspace = 2 \cdot 5 \cdot 17 \)
Index: \(28392\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 13^{2} \)
Exponent: \(170\)\(\medspace = 2 \cdot 5 \cdot 17 \)
Generators: $\left[ \left(\begin{array}{rr} 90 & 6 \\ 7 & 83 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 144 & 33 \\ 60 & 60 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 90 & 44 \\ 45 & 91 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\PGL(2,169)$
Order: \(4826640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Exponent: \(185640\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
$\operatorname{Aut}(H)$ $F_5\times F_{17}$, of order \(5440\)\(\medspace = 2^{6} \cdot 5 \cdot 17 \)
$W$$D_{85}$, of order \(170\)\(\medspace = 2 \cdot 5 \cdot 17 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{170}$
Normal closure:$\PSL(2,169)$
Core:$C_1$
Minimal over-subgroups:$\PSL(2,169)$$D_{170}$
Maximal under-subgroups:$C_{85}$$D_{17}$$D_5$

Other information

Number of subgroups in this conjugacy class$14196$
Möbius function$1$
Projective image$\PGL(2,169)$