Properties

Label 4826640.c.2.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\PSL(2,169)$
Order: \(2413320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Index: \(2\)
Exponent: \(92820\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Generators: $\left[ \left(\begin{array}{rr} 8 & -1 \\ 154 & 8 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 62 & -1 \\ 101 & 84 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 164 & -1 \\ 141 & 82 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 112 & 67 \\ 149 & 120 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 5 & -1 \\ 112 & 5 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), the socle, maximal, a semidirect factor, nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $\PGL(2,169)$
Order: \(4826640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
Exponent: \(185640\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
$\operatorname{Aut}(H)$ $\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)
$W$$\PGL(2,169)$, of order \(4826640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\PGL(2,169)$
Complements:$C_2$
Minimal over-subgroups:$\PGL(2,169)$
Maximal under-subgroups:$C_{13}^2:C_{84}$$\PGL(2,13)$$D_{85}$$D_{84}$$A_5$

Other information

Möbius function$-1$
Projective image$\PGL(2,169)$