Properties

Label 4800.bk.480.l1.a1
Order $ 2 \cdot 5 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 2 & 2 & 1 & 9 \\ 6 & 6 & 7 & 1 \\ 10 & 4 & 5 & 9 \\ 3 & 10 & 5 & 9 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(320\)\(\medspace = 2^{6} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}^2:C_2^2$
Normalizer:$C_{10}^2:C_2^2$
Normal closure:$C_5\times \GL(2,3)$
Core:$C_5$
Minimal over-subgroups:$C_5\times C_{10}$$C_5\times S_3$$C_5\times S_3$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$0$
Projective image$\GL(2,3):D_{10}$