Properties

Label 4800.bk.160.l1.a2
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 5 & 3 & 3 & 0 \\ 5 & 8 & 3 & 3 \\ 3 & 8 & 2 & 8 \\ 3 & 3 & 6 & 5 \end{array}\right), \left(\begin{array}{rrrr} 9 & 9 & 10 & 2 \\ 5 & 5 & 4 & 10 \\ 1 & 7 & 6 & 2 \\ 8 & 1 & 6 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_5\times \GL(2,3):D_{10}$
Order: \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_4\times F_5).C_2^5$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{10}\wr C_2$
Normalizer:$C_{10}^2:D_6$
Normal closure:$C_5\times \GL(2,3)$
Core:$C_5$
Minimal over-subgroups:$S_3\times C_5^2$$S_3\times C_{10}$$S_3\times C_{10}$$S_3\times C_{10}$
Maximal under-subgroups:$C_{15}$$C_{10}$$S_3$
Autjugate subgroups:4800.bk.160.l1.a1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$\GL(2,3):D_{10}$