Properties

Label 47520.a.6.a1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$M_{11}$
Order: \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\langle(1,7)(3,8)(5,9)(10,11), (2,8,10,5)(4,9,6,7)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $S_3\times M_{11}$
Order: \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$W$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$S_3$
Normalizer:$S_3\times M_{11}$
Complements:$S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_3\times M_{11}$$C_2\times M_{11}$
Maximal under-subgroups:$A_6.C_2$$\PSL(2,11)$$F_9:C_2$$S_5$$\GL(2,3)$

Other information

Möbius function$3$
Projective image$S_3\times M_{11}$