Subgroup ($H$) information
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(2,8)(4,5)(6,10)(9,11)(12,13), (12,13,14)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Ambient group ($G$) information
Description: | $S_3\times M_{11}$ |
Order: | \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $165$ |
Möbius function | $0$ |
Projective image | $S_3\times M_{11}$ |