Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | \(3\) |
Generators: |
$\langle(12,13,14)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, cyclic (hence abelian, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $S_3\times M_{11}$ |
Order: | \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $C_2\times M_{11}$ |
Order: | \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Automorphism Group: | $M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $1$ |
The quotient is nonabelian and nonsolvable.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_3\times M_{11}$ | |||||
Normalizer: | $S_3\times M_{11}$ | |||||
Complements: | $C_2\times M_{11}$ | |||||
Minimal over-subgroups: | $C_{33}$ | $C_{15}$ | $C_3^2$ | $S_3$ | $C_6$ | $S_3$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $7920$ |
Projective image | $S_3\times M_{11}$ |