Subgroup ($H$) information
Description: | $C_2\times C_8$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(2970\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\langle(1,4)(2,7)(5,9)(8,10), (12,14), (1,10,4,8)(2,9,7,5)(12,14), (1,2,10,9,4,7,8,5)(6,11)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $S_3\times M_{11}$ |
Order: | \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $1485$ |
Möbius function | $0$ |
Projective image | $S_3\times M_{11}$ |