Properties

Label 47520.a.2970.a1.a1
Order $ 2^{4} $
Index $ 2 \cdot 3^{3} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(2970\)\(\medspace = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\langle(1,4)(2,7)(5,9)(8,10), (12,14), (1,10,4,8)(2,9,7,5)(12,14), (1,2,10,9,4,7,8,5)(6,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $S_3\times M_{11}$
Order: \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_2\times \SD_{16}$
Normal closure:$S_3\times M_{11}$
Core:$C_1$
Minimal over-subgroups:$C_2\times F_9$$S_3\times C_8$$C_2\times \SD_{16}$
Maximal under-subgroups:$C_2\times C_4$$C_8$$C_8$

Other information

Number of subgroups in this conjugacy class$1485$
Möbius function$0$
Projective image$S_3\times M_{11}$