Properties

Label 47520.a.330.a1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_9$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,6,2,4)(3,9,10,8), (1,10,6)(2,4,3)(7,8,9), (13,14), (1,2)(3,10)(4,6)(8,9), (1,10,4,9,2,3,6,8)(5,11), (1,8,3)(2,10,9)(4,6,7)(13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_3\times M_{11}$
Order: \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$F_9:C_2^2$
Normal closure:$S_3\times M_{11}$
Core:$C_1$
Minimal over-subgroups:$S_3\times F_9$$F_9:C_2^2$
Maximal under-subgroups:$C_2\times C_3^2:C_4$$F_9$$F_9$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$165$
Möbius function$0$
Projective image$S_3\times M_{11}$