Subgroup ($H$) information
Description: | $C_2\times F_9$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\langle(1,6,2,4)(3,9,10,8), (1,10,6)(2,4,3)(7,8,9), (13,14), (1,2)(3,10)(4,6)(8,9), (1,10,4,9,2,3,6,8)(5,11), (1,8,3)(2,10,9)(4,6,7)(13,14)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $S_3\times M_{11}$ |
Order: | \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times M_{11}$, of order \(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$W$ | $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $165$ |
Möbius function | $0$ |
Projective image | $S_3\times M_{11}$ |