Properties

Label 466560.s.72.P
Order $ 2^{4} \cdot 3^{4} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times C_3^3:S_4$
Order: \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,5,6,4,3)(7,8,9)(10,13)(11,15)(12,14), (10,12,11), (7,8)(13,15), (1,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$W$$F_5\times C_3^3:S_4$, of order \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_5\times C_3^3:S_4$
Normal closure:$A_6\times C_3^3:S_4$
Core:$C_3^3:S_4$
Minimal over-subgroups:$A_5\times C_3^3:S_4$$F_5\times C_3^3:S_4$
Maximal under-subgroups:$C_5\times C_3^3:S_4$$D_5\times C_3^3:A_4$$(C_3^2\times C_{15}):S_4$$D_5\times S_3^2:S_3$$C_3\wr S_3\times D_5$$C_2\times C_3^3:S_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$