Subgroup ($H$) information
Description: | $A_6\times C_3^3:S_4$ |
Order: | \(233280\)\(\medspace = 2^{6} \cdot 3^{6} \cdot 5 \) |
Index: | \(2\) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Generators: |
$\langle(10,12,11), (1,6)(2,3)(7,8,9)(10,13,11,15,12,14), (7,8)(13,15), (1,6,2,5) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.
Ambient group ($G$) information
Description: | $C_3^3:S_4\times S_6$ |
Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
$W$ | $C_3^3:S_4\times S_6$, of order \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^3:S_4\times S_6$ |