Properties

Label 466560.s.12.H
Order $ 2^{5} \cdot 3^{5} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5\times C_3^3:S_4$
Order: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(10,12,11), (7,8)(13,15), (1,3,2)(13,15,14), (13,14,15), (2,6)(3,5)(7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$W$$C_3^3:S_4\times S_5$, of order \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3:S_4\times S_5$
Normal closure:$A_6\times C_3^3:S_4$
Core:$C_3^3:S_4$
Minimal over-subgroups:$A_6\times C_3^3:S_4$$C_3^3:S_4\times S_5$
Maximal under-subgroups:$A_5\times C_3^3:A_4$$A_5\times S_3^2:S_3$$A_5\times C_3\wr S_3$$A_4\times C_3^3:S_4$$D_5\times C_3^3:S_4$$S_3\times C_3^3:S_4$$S_4\times A_5$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$