Subgroup ($H$) information
| Description: | $C_3:D_4\times A_6$ | 
| Order: | \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \) | 
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Generators: | $\langle(1,6)(2,3)(7,8,9)(10,14)(11,13)(12,15), (7,8)(13,14), (1,6,2,5)(3,4)(7,9)(13,14), (10,11)(13,14), (8,9)(10,14,11,13)(12,15), (7,8,9)\rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian and nonsolvable.
Ambient group ($G$) information
| Description: | $C_3^3:S_4\times S_6$ | 
| Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $C_2\times S_6.C_2\times D_6$ | 
| $W$ | $D_6\times S_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $27$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_3^3:S_4\times S_6$ | 
