Properties

Label 466560.s.324.K
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,4):D_4$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3,6)(2,5,4)(7,8,9)(10,15)(11,14)(12,13), (8,9)(10,15,12,13)(11,14), (1,5)(3,6)(7,8,9)(10,12)(13,15), (7,8)(13,15), (10,12)(13,15), (7,8,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $\GL(2,4):C_2^4$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$D_6\times S_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3:D_4\times S_5$
Normal closure:$A_6\times C_3^3:S_4$
Core:$C_1$
Minimal over-subgroups:$A_5\times S_3^2:S_3$$C_3:D_4\times A_6$$C_3:D_4\times S_5$

Other information

Number of subgroups in this autjugacy class$324$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$