Properties

Label 466560.s.24.C
Order $ 2^{4} \cdot 3^{5} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3\times S_6$
Order: \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(10,12,11)(13,15,14), (7,14,12)(8,15,11)(9,13,10), (7,8,9)(13,15,14), (1,2,3,4,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_6.C_2\times \AGL(2,3)$
$W$$C_3^2:C_6\times S_6$, of order \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3\wr S_3\times S_6$
Normal closure:$C_3^3:A_4\times S_6$
Core:$S_6$
Minimal over-subgroups:$C_3\wr C_3\times S_6$$C_3^2:S_3\times S_6$
Maximal under-subgroups:$\He_3\times A_6$$C_3^2\times S_6$$C_3^2\times S_6$$\He_3\times S_5$$\He_3\times \SOPlus(4,2)$$C_2\times S_4\times \He_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$