Subgroup ($H$) information
Description: | $C_3\wr S_3\times S_6$ |
Order: | \(116640\)\(\medspace = 2^{5} \cdot 3^{6} \cdot 5 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Generators: |
$\langle(1,3)(2,6)(4,5)(7,9,8)(10,13)(11,14)(12,15), (7,14,10,9,15,11,8,13,12), (10,12,11) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, and nonsolvable.
Ambient group ($G$) information
Description: | $C_3^3:S_4\times S_6$ |
Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_3\times C_3.S_3^2.A_6.C_2^2$ |
$W$ | $C_3^2:C_6\times S_6$, of order \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^3:S_4\times S_6$ |