Properties

Label 466560.s.360.CG
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_4\times \He_3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3)(2,6)(10,11,12)(13,14,15), (1,3)(4,5)(7,8,9)(13,14,15), (1,3)(2,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_6^2:(D_6\times \GL(2,3))$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^3:S_3^2$
Normal closure:$C_3^3:A_4\times S_6$
Core:$C_1$
Minimal over-subgroups:$\He_3\times S_6$$C_3^3:C_6\times S_4$$C_3^2:D_6\times S_4$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$