Subgroup ($H$) information
Description: | $C_2\times C_3^3:S_4^2$ |
Order: | \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
Index: | \(15\)\(\medspace = 3 \cdot 5 \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(7,14,12,8,13,10,9,15,11), (7,8)(13,15), (7,11,8,10)(9,12)(13,15), (1,3) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3^3:S_4\times S_6$ |
Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2\times C_3^3.A_4^2.C_2^4$ |
$W$ | $C_3^3:S_4^2$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $30$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $C_3^3:S_4\times S_6$ |