Properties

Label 466560.s.15.a1
Order $ 2^{7} \cdot 3^{5} $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^3:S_4^2$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(7,14,12,8,13,10,9,15,11), (7,8)(13,15), (7,11,8,10)(9,12)(13,15), (1,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_3^3.A_4^2.C_2^4$
$W$$C_3^3:S_4^2$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^3:S_4^2$
Normal closure:$C_3^3:S_4\times S_6$
Core:$C_3^3:S_4$
Minimal over-subgroups:$C_3^3:S_4\times S_6$
Maximal under-subgroups:$C_6^3:(C_3\times S_4)$$C_6^3:C_3:S_4$$C_3^3:S_4^2$$C_3^3:S_4^2$$C_6^3:(S_3\times A_4)$$C_3^3:S_4^2$$C_3^3:S_4^2$$C_6^3:(C_2\times S_4)$$S_3^2:D_6\times S_4$$D_6\times C_3^3:S_4$$C_6^3:S_3^2$$C_2\times S_4^2$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$