Subgroup ($H$) information
| Description: | $C_3^3:S_4^2$ |
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
| Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Generators: |
$\langle(1,3)(2,6)(4,5)(7,9)(10,13,12,15)(11,14), (10,12,11), (1,6)(4,5)(7,9)(10,13,11,15) \!\cdots\! \rangle$
|
| Derived length: | $4$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3^3:S_4\times S_6$ |
| Order: | \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3:C_2^2.D_6.A_6.C_2^2$ |
| $\operatorname{Aut}(H)$ | $S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| $W$ | $C_3^3:S_4^2$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $30$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_3^3:S_4\times S_6$ |