Properties

Label 466560.s.30.D
Order $ 2^{6} \cdot 3^{5} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_4^2$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,3)(2,6)(4,5)(7,9)(10,13,12,15)(11,14), (10,12,11), (1,6)(4,5)(7,9)(10,13,11,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_4\times S_6$
Order: \(466560\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:C_2^2.D_6.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_3\wr S_3\times S_4$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
$W$$C_3^3:S_4^2$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^3:S_4^2$
Normal closure:$C_3^3:S_4\times S_6$
Core:$C_3^3:A_4$
Minimal over-subgroups:$C_2\times C_3^3:S_4^2$
Maximal under-subgroups:$C_3^3:A_4\times S_4$$A_4\times C_3^3:S_4$$(A_4\times C_3^3):S_4$$D_4\times C_3^3:S_4$$D_6^2:S_3^2$$S_3\times C_3^3:S_4$$C_3\wr S_3\times S_4$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^3:S_4\times S_6$