Subgroup ($H$) information
Description: | $C_3\times C_{192}$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Generators: |
$a^{18}b^{3}, b^{108}, b^{24}, a^{8}b^{96}, a^{12}b^{102}, b^{96}, b^{48}, b^{64}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{192}.C_{24}$ |
Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_{32}.C_8.C_2^6.C_2)$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{16}\times \GL(2,3)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\card{W}$ | $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | not computed |
Projective image | not computed |