Properties

Label 4608.y.8.g1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{192}$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $a^{18}b^{3}, b^{108}, b^{24}, a^{8}b^{96}, a^{12}b^{102}, b^{96}, b^{48}, b^{64}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{192}.C_{24}$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_{32}.C_8.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_2\times C_{16}\times \GL(2,3)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_{12}\times C_{192}$
Normalizer:$C_{12}\times C_{192}$
Normal closure:$C_6\times C_{192}$
Core:$C_3\times C_{96}$
Minimal over-subgroups:$C_6\times C_{192}$
Maximal under-subgroups:$C_3\times C_{96}$$C_{192}$$C_{192}$$C_{192}$$C_{192}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed