Properties

Label 4608.y.24.p1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{192}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $a^{18}b^{3}, b^{48}, b^{24}, a^{8}b^{96}, b^{96}, a^{12}b^{102}, b^{108}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{192}.C_{24}$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_{32}.C_8.C_2^6.C_2)$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_{12}\times C_{192}$
Normalizer:$C_{12}\times C_{192}$
Normal closure:$C_2\times C_{192}$
Core:$C_{96}$
Minimal over-subgroups:$C_3\times C_{192}$$C_2\times C_{192}$
Maximal under-subgroups:$C_{96}$$C_{64}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed