Subgroup ($H$) information
| Description: | $C_{192}$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Generators: |
$a^{18}b^{3}, b^{48}, b^{24}, a^{8}b^{96}, b^{96}, a^{12}b^{102}, b^{108}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{192}.C_{24}$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_{32}.C_8.C_2^6.C_2)$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
| $\card{W}$ | $1$ |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | not computed |